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As the theory of chaotic scattering in high-dimensional systems is poorly developed, it is very difficult to
determine initial conditions for which interesting scattering events, such as long delay times, occur. We propose
to use symmetry breaking as a way to gain the insight necessary to determine low-dimensional subspaces of
initial conditions in which we can find such events easily. We study numerically the planar scattering off a disk
moving on an elliptic Kepler orbit, as a simplified model of the elliptic restricted three-body problem. When
the motion of the disk is circular, the system has an integral of motion, the Jacobi integral, which is no longer
conserved for nonvanishing eccentricity. In the latter case, the system has an effective five-dimensional phase
space and is therefore not amenable for study with the usual methods. Using the symmetric problem as a
starting point we define an appropriate two-dimensional subspace of initial conditions by fixing some coordi-
nates. This subspace proves to be useful to define scattering experiments where the rich and nontrivial dynam-
ics of the problem is illustrated. We consider in particular trajectories which take very long before escaping or
are trapped by consecutive collisions with the disk.
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I. INTRODUCTION

The classical dynamics of scattering systems, in particular
its chaotic manifestations, is well understood for open
Hamiltonian systems with two effective degrees of freedom.
Typical examples are one-dimensional periodically kicked
driven systems and conservativestime-independentd ones of
two degrees of freedom. The effective dimension of phase
space is then 3. In such cases the dynamics are determined
by the properties of the invariant set or chaotic saddle.
Smale’s horseshoe construction can then be performed on an
appropriate surface of sectionf1–4g and explains adequately
the topology and symbolic dynamics of such a problem.

Unfortunately the situation becomes qualitatively more
complex for higher dimensions. Not only is the surface of
section no longer two dimensional and thus not easy to draw
and understand, but fundamental differences occur; e.g., in-
variant tori no longer separate the phase space, giving rise to
Arnold diffusion, and besides hyperbolic and elliptic fixed
points also loxodromic ones can appear. Wiggins and co-
workersf5,6g have made some progress in characterizing the
invariant manifolds of Hamiltonian flow in higher dimen-
sions, but we are far from a useful understanding of the
chaotic saddle in the general situation.

In the present paper we will take a pragmatic approach
and attempt to find a two-dimensional subspace of initial
conditions for the chaotic scattering process, such that a chart
of delay times over this space will yield the relevant infor-
mation. We shall choose a planar elliptic restricted three-
body problem to carry out such an analysis, because this
problem is of considerable importance and much discussed
in the literature. We shall not use the 1/r potential, but a
simpler hard-disk model, which conserves the relevant fea-
tures and is particularly easy to handlef7g. Even in this sim-
pler problem the total space of initial conditions is five-

dimensional, so the choice of the subspace requires a consid-
erable physical insight, or plain luck, to an unreasonable de-
gree. We shall thus opt for a particular, but very important
situation, where the physical insight is systematically avail-
able.

A common route for dimensional reduction of a system is
the existence of a continuous symmetry, which leads to a
conserved quantity. We can hope therefore that a slight
breaking of such a symmetry, while putting us abruptly in a
higher-dimensional space, will nevertheless leave an impor-
tant mark on the system, which will in some sense slowly
vanish as symmetry breaking increases. On the other hand,
this case is certainly not irrelevant, but rather occurs quite
frequently in practice; see, for instance,f8,9g. It would cer-
tainly be interesting to search for a group-theoretical inter-
pretation of such a procedure, and some work exists in this
respectf10g, but this would lead us well beyond the scope of
the present analysis.

In our chosen example—namely, the restricted three-body
problem—the constant of motion in question is the Jacobi
integral f11g which is conserved when the orbits of the two
heavy bodies are exactly circular. While this is probably
never the case in a real system, small eccentricities of orbits
are quite common. In particular we have an interest in nar-
row planetary ringsf12–14g with shepherd moons; they typi-
cally have small eccentricities. Such is the case, e.g., for the
moons accompanying Saturn’s F ring or Uranus’e ring f15g.

The paper is organized as follows: In the next section we
shall describe the hard-disk model we use and reexamine the
circular case. In Sec. III we choose the subspace of initial
conditions. In Sec. IV we analyze the charts we obtain for
our problem and consider the implications for the dynamics
of orbits trapped permanently or at least for very long times.
Finally, we draw some conclusions.
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II. DESCRIPTION OF THE MODEL

We study the planar scattering of a point particle off a
hard-disk on a two-dimensional periodic orbit. The center of
the disk moves on an elliptic Kepler orbit with one focus at
the origin. The phase space of this system is therefore five
dimensionalstwo and a half degrees of freedomd: Two coor-
dinates and two canonically conjugated momenta define the
position in phase space of the particle, and one anglesor
initial phased determines the initial position of the disk along
the Kepler orbit. As we shall see below, the special case of a
circular orbit allows for a reduction of the dimensionality of
the problem due to Jacobi’s integral of motion.

The Kepler orbit can be parametrized asf16g

x = ascosE − «d, s1d

y = as1 − «2d1/2sinE, s2d

t = sa3/Kd1/2sE − « sinEd. s3d

Here, a represents the semimajor axis of the ellipse,«
P f0,1d is the eccentricity,K is a strength parametersbelow
set equal to 1d, andE is the eccentric anomaly. The foci of
the ellipse define thex axis of the fixed coordinate frame
ssidereal framed, the periapsis of the ellipse defines the posi-
tive x direction, and the motion along the ellipse is counter-
clockwise. We observe that the Kepler equationfEq. s3dg,
which relates the physical timet with E, implies that such an
elliptic orbit is a solution of the two-body Kepler problem.
An alternative parametrization is the usual one in polar co-
ordinates,

r =
as1 − «2d

1 + « cossf − f0d
. s4d

Here f is the polar angle at timet and f0 is the initial
position of the disk along the Kepler orbit with respect to the
periapsissinitial phased. The polar anglef is related to the
physical time byr2ḟ=fKas1−«2dg1/2, ḟ denoting the time
derivative off. In the following, we define the units bya
=1 andK=1. In these units, the timet is also called mean
anomaly and the orbital period is 2p.

The dynamics of the scattering system are as follows. The
particle moves freely until it encounters the disk. No colli-
sion leads to open motion; i.e., the particle escapes from the
interaction region. If a collision takes place, the particle is
specularly reflected with respect to the localsmovingd frame,
at the collision point. This defines the outgoing conditions
after the collision. In general, the result of a collision de-
pends on the position where the collision occurs on the disk,
the relative velocities, and for nonvanishing«, on the posi-
tion along the elliptic trajectory of the disk.

When the eccentricity is zero, the motion of the disk is
uniformly circular and there exists a constant of motion, the
Jacobi integral. This quantity corresponds to the Hamiltonian
in a rotatingssynodicd frame of appropriate constant angular
velocity. From the fact that the orbit of the disk is circular,
the primitive periodic orbits of the systemsin the rotating or

synodic framed can be easily identified with the orbits of
consecutive radial collisionsf7g. These orbits satisfy the re-
lation

v =
ṽ

vsa − dd
=

2 cosb

ps2n + 1d − 2b
= −

2 cosu

ps2n − 1d + 2u
. s5d

Herev is the dimensionless magnitude of the velocity vector
in the fixed framesṽ is the physical velocity andv=1 is the
rotation frequencyd, bP f−p /2 ,p /2g is the angle formed by
the outgoing trajectory with respect to the normal at the col-
lision point, andu=p−b, p /2øuø3p /2. The parameter
n=0,1,2, . . .defines the number of full turns that the disk
completes between consecutive collisions. From Eq.s5d, an
explicit expression for the Jacobi integral as a function ofb
sor ud can be derivedf7g. Conservation of the Jacobi integral
leads naturally to a reduction of the dimensionality of the
problem and allows us to use standard methods to study the
chaotic saddlef7g.

For nonzero eccentricity there is no constant of motion,
and Poincaré sections cannot be used easily because in the
present case they would be four dimensional. In particular,
for nonzero« there is a nontrivial dependence of the out-
come of the collisions with respect to the positionf on the
orbit of disk. By consequence, the construction of the primi-
tive periodic orbits for the circular problem may not be help-
ful in the eccentric case. Yet they allow us to prove the ex-
istence of periodic orbits in the system for small
eccentricities. We must thus rely on an exploration of the
structure of the space of initial conditions of this system,
e.g., in terms of the number of collisions, for different values
of «. This can be used to define meaningful one-parameter
scattering experiments that sample distinct regions of the
chaotic saddle in phase space.

III. SPACE OF INITIAL CONDITIONS

A. Definitions

As mentioned above, the space of initial conditions is five
dimensional. This space can be characterized by the anglef0
with −pøf0øp, which denotes the initial position of the
center of the disk, and the two coordinates and momenta
which specify the initial conditions of the particle. For con-
creteness, we restrict the initial position of the particle to be
on the disk. This allows us to use only the anglea
P f0,2pg to specify completely the initial position of the
particle. This choice implicitly selects the scattering events
that lead to a collision with the disk at the position charac-
terized bya andf0. For the initial outgoing velocity of the
particle, we still require two quantities; we choose the mag-
nitude of the velocityv and its direction as defined above by
the angleu. Figure 1 illustrates the definition of the set of
initial parameters. This space is four dimensional, which is
still too large to be explored numerically, in particular in
order to consider the regions in phase space where nontrivial
dynamics takes placef5,6,17g.

We shall further fix the anglesf0 anda, thus leading to
an effective two-dimensional space of initial conditions.
These two angles can in principle be arbitrarily fixed. We
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recall that in the circular case the primitive periodic orbits
correspond to radial collisions, which is geometrically ex-
pressed asa−f0=p. Intuitively, we expect that for small
eccentricity the periodic orbits lie somewhat close to those of
the circular case. Guided by the circular case, we shall there-
fore fix a−f0=p. Yet the rotational symmetry of the circular
case provides no further guide to define another condition
which involves these two angles. We arbitrarily consider the
condition f0=0, unless otherwise explicitedscf. Sec. IVd.
This situation corresponds to exploring the events which dis-
play a collision at the periapsis. If there exists a periodic
orbit bouncing at this position or, at least, if the stable or
unstable manifolds of an unstable periodic orbit have a com-
ponent atf0=0, our scattering experiments will detect them.
Clearly, our analysis can be extended to any values off0 and
a.

In the numerical results presented below, we fix the radius
of the disk tod/a=1/3. Thenumerical value ofd/a does
influence the stability properties of the trapped orbits. For the
circular case, the value 1/3 was found to be a good choice
for numerical purposes.

B. Results for the circular case

We begin analyzing the space of initial conditions in
terms of the number of bounces,Nb, when the disk moves on
a circular orbit. This case shall provide some basic under-
standing of the numerical results, in particular by comparing
them with the analytical considerations of the primitive pe-
riodic orbits described above. Similar results are obtained for
other scattering functions which behave monotonically when
a periodic orbit is approached.

Figure 2 shows the space of initial conditions in terms of
the number of collisions and the analytical results given by
Eq. s5d. As expected, the numerical results display a system-
atic approach towards the analytical curves as the number of
collisions increases. However, we note that there are regions
where this approach is particularly slow, as in the case of the
broad region observed around the curven=0 for u close to
p /2. Furthermore, there are other regions in the space of
initial conditions where certain interesting structures appear
which have no apparent relation to the primitive periodic
orbits. This can be clearly observed below the curven=0;
similar results are also obtained for other values ofn.

The broad structure found foru→p /2 can be easily un-
derstood. As observed inf12g, the casen=0 for the primitive
periodic orbits is particular whenu→p /2sb→p /2d: The
periodic orbit involved is marginally stable, runs following
the motion of the disksdirect motiond, and its shape ap-
proaches the inner circle described by the disk. Clearly, the
periodic orbit in question is a whispering-gallery orbit. The
marginal stability of these orbits causes the numerical results
to converge slowly. Numerical inspection of scattering
events in this region confirms this.

Next, we consider the appearance of the snail-like struc-
ture in the space of initial conditionsssee also Fig. 4 below
and f7gd. We emphasize that this structure cannot be associ-
ated directly to any primitive periodic orbit—i.e., to the con-
secutive radial collision orbits, since these fulfill Eq.s5d.
Numerical experiments reported inf7g showed that these
structures are related to events where the particle, after a
certain number of collisions, loses almost all its kinetic en-
ergy. The outcome of this event is extremely sensitive to the
initial conditions. A detailed description of the scattering dy-
namics is presented in Sec. IV.

C. Results for the elliptic orbit

In Fig. 3 we present the space of initial conditions for
several values of the eccentricity. We observe first that the
overall structure of the charts of the space of initial condi-

FIG. 1. Definition of the initial conditions for the scattering
setup:f0 denotes the initial position of the center of the disk along
the Kepler orbit,a denotes the initial position of the particle on the
disk sinitial collision pointd, andv denotes thesscaledd magnitude
of the outgoing velocity andu defines its direction. The foci of the
ellipse are shown on thex axis as open circlesssd and the center by
a crosss1d. The origin of the coordinate system is one focus of the
ellipse.

FIG. 2. sColor onlined Space of initial conditions for«=0 sa
=p, f0=0d. Colors indicate the number of bounces with the disk
sfrom lighter to darkd: three bouncessturquoised, four bounces
sgreend, five bouncessoranged, six bouncessmagentad, and seven
and more bouncessblued. The solid curves correspond to the ana-
lytical results given by Eq.s5d.

SYMMETRY BREAKING: A HEURISTIC APPROACH TO… PHYSICAL REVIEW E 71, 036225s2005d

036225-3



tions is essentially maintained for small eccentricities at least
up to«=0.3 and beyond 0.4 up to 0.8 fornù1. In particular,
we note that then hierarchysor n curvesd of the arrangement
of periodic orbits for the circular case is preserved at least for
moderate values of the eccentricity. This feature is nontrivial,
especially for intermediate or large eccentricities, since the
simple geometrical arguments used to obtain Eq.s5d heavily
rely on the circular character of the orbit and are not useful
for the case of nonvanishing«. This statement is a conse-
quence of the fact that in the eccentric case the outcome of
the collision depends on the value off where the collision
takes place along the orbit of the disk. In the Appendix we
present a proof of the existence of periodic orbits for small
nonvanishing eccentricities. We note that in this case this
proof does explain the hierarchical organization of the peri-
odic orbits in the initial conditions space—i.e., then-curve

FIG. 3. sColor onlined Space of initial conditions for different values of the eccentricity:sad «=0.001, sbd «=0.3, scd «=0.4, sdd «
=0.5, sed «=0.6, andsfd «=0.8. Colors indicate the number of bounces with the disksfrom lighter to darkd: three bouncessgrayd, four
bouncessturquoised, five bouncessgreend, six bouncessoranged, seven bouncessmagentad, and eight and more bouncessblued.

FIG. 4. sColor onlined Enlargement of a region of Fig. 3sad
s«=0.001d illustrating the snail structuressame color code as in
Fig. 3d.
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hierarchical structure. The dependence uponn appears im-
plicitly in v0.

We observe that then=0 curves tend to increase the value
of v asu→p /2. This is a consequence of the increase in the
velocity at periapsis passage, which follows from angular
momentum conservation of the Kepler motion. It is also in-
teresting to note that the snail-like structures encountered
previously for the circular case show up again. Figure 4
shows an enlargement of the case«=0.001 illustrating the
snail structure. We observe that the snail structure seems to
appear not as an isolated one, but with some companions.
This can be noticed in Figs. 3 especially for intermediate and
large values of«, as the stretched region that appears in
between the main branch of then=0 structure and the snail
structure. In Sec. IV we shall show that the snail structures
are related to projections of the homoclinic intersections in
the space of initial conditions.

The space of initial conditions that correspond to the two
eccentricity intervals mentioned above differ in particular in
the behavior of then=0 curve. On the one hand, for values
corresponding to«ù0.4 then=0 curve is broken into two
disjoint segments which fold back and therefore are not in-
dividually defined for the whole range ofu. Thus there exist
events which display many bounces with the disk, related to
then=0 orbit, but not for all values ofu. On the other hand,
for «ø0.3 the two manifolds appear to be connected and are
defined in the whole range ofu. This clearly points out to the
occurrence of a bifurcation which may create or destroy pe-
riodic orbits by varying«. Details of this bifurcation are
shown in Fig. 5. The two initially separated stable manifolds
approach each other systematically. For eccentricities around
«,0.33 s0.32ø«ø0.35d the manifolds seemingly merge,
and beyond 0.35 they separate again folding back. The exact
value of« where the bifurcation takes place depends on the
valuef0 considered to sample the space of initial conditions.
While the charts of initial conditions provide no further in-
formation about this bifurcation, they clearly exhibit regions
in the space of initial conditions where interesting behavior
may show up. We mention that this type of bifurcation also

occurs involving othern curves in the space of initial condi-
tions. These cases are more difficult to study numerically,
due to the accumulation of then curves towards zerofcf. Eq.
s5dg.

For «=0 the stable manifolds of then curves also merge,
in general into two distinct positions. This follows from the
fact in the circular case there exist regions in the parameter
space where the radial collision orbits are stable. In this case,
the development of the horseshoe construction is such that
the new periodic orbits are created through saddle-center bi-
furcations by changing the Jacobi integral. This occurs when
the invariant manifolds intersect at the symmetry line. We
therefore expect that interesting scattering behavior occurs
for small values of the eccentricity, relatively close to the
position on the space of initial conditions, where such
saddle-center bifurcations take place. Indeed, as we shall
show in the next section for a particular value of« swhich is
far from the bifurcation illustrated in Fig. 5d, the scattering
functions display a large number of collisions. This is neces-
sary, though not sufficient, for the existence of regions in
phase space where the motion is bounded.

Other interesting features also apparent in the charts of
initial conditionssFig. 3d are related to the effective shrink-
ing of the “trapping region” as the eccentricity of the Kepler
orbit is increased. In particular, we mention the value«1=1
−d/a, where the disk covers the foci at the turning points,
thus inducing changes in the local propertiesscurvatured at
the turning points, and the value«2

2=1−sd/ad2, where the
trapping region shrinks to a point.

IV. STRUCTURE OF THE SCATTERING FUNCTIONS
FOR «=0.001

In this section, we shall study specific scattering functions
for the case«=0.001. The main motivation to consider such
small yet nonzero eccentricity comes from the data corre-
sponding to the shepherd satellites of Uranus and Saturn. The
scattering functions will be functions of one variable, the
initial magnitude of the outgoing velocityv, which follows
after fixing the value of the angleu. The latter will be speci-
fied using the results of the initial conditions space, in such a
way that by changingv there is an intersection with the
regions that display many collisions with the diskscf. Fig. 3d.
In particular, we shall consider the number of bouncesNb
and/or the escape timeTe, which is the time that the particle
requires to leave the scattering region. These quantities are
related to each other in general, and thus some information is
redundant. Yet for the study of the snail structure together
they provide a clear picture of the scattering dynamics as we
shall see below.

We shall study two regions of the initial conditions sub-
space: First, we address the question of the existence of
trapped motion for nonzero eccentricity. We present results
on a region where the correspondingn=0 curve in the circu-
lar case displays stable radial-collision periodic orbitssretro-
grade motiond. Second, we consider the dynamics around the
snail structure displayed in Fig. 4.

A. Trapped motion

The structure of the initial condition space for small val-
ues of the eccentricity resembles closely that of the circular

FIG. 5. sColor onlined Space of initial conditions for different
values of the eccentricity illustrating the bifurcation of then=0
curve sfrom lighter to darkerd: «=0.31 sgrayd, «=0.32 sturquoised,
«=0.33 soranged, «=0.34 sgreend, «=0.35 smagentad, «=0.36
sblued, and«=0.37 svioletd.
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case, displaying then curves hierarchical arrangement and
the snail structures. It is thus natural to expect that the scat-
tering dynamics of this case mimics those of the circular
case. In particular, we are interested in the question of the
existence of regions in phase space of purely trapped
motion—that is, regions where the particle is trapped dy-
namically through consecutive collisions with the disk.
These regions are of interest in connection with the occur-
rence of narrow rings in the presence of shepherd moons
f12–15g. We emphasize that the existence of these regions of
trapped motion is not a trivial extension of what happens in
the circular case, for at least two reasons. First, for nonvan-
ishing « there is a complicate dependence of the collision
output on the disk’s orbital positionf. Second and more
important, the argument that leads to prove the existence of
stable periodic orbits for the circular case, and hence regions
of trapped motion, relies on the generic character of the
saddle-center bifurcation. Such argumentation is validonly
when a single parameter is varied. In the circular case such a
parameter is naturally defined by the only constant of mo-
tion, the Jacobi integral. In contrast, the lack of this integral
of motion in the eccentric case involves thus two-parameter
bifurcations.

Inspection of the space of initial conditions shows a large
number of collisions in an interval close tou<3.62. This
interval is close to the location where then=0 stable periodic
orbits are located. In Fig. 6 we present the number of colli-
sions as a function of the initial velocityv for some values of
u. Similar results are obtained forTe. Figures 6sad and 6sdd
show the typical structure found in systems displaying fully
developed topological chaos. However, comparing the re-
sults for different values ofu, we notice that the structure of
the scattering functions actually changes. Concretely, foru
=3.55 in Fig. 6sad, we have the usual two-peak Cantor set
structure: At least for the low-lying hierarchical levels, each
interval of continuityf18g splits into two in the next level.
This is consistent with the dominance of the hyperbolic com-
ponent of a binary horseshoe, up to the level of development
numerically considered. In contrast, in Fig. 6sbd we observe
for u=3.6 that the neat Cantor structure is now dominated by
one of the peaks. Some of the intervals of continuity split
into two peaks in the next hierarchical level, while others do
not do it until a higher level. Such a structural change in the
scattering functions is associated with pruning—i.e., with the
appearance of nonhyperbolic components in the chaotic
saddle which dominate the scattering dynamics. In addition,
the maximum number of bounces is increased and we ob-
serve trajectories displaying up to 50 bounces. Similar results
displayed in Fig. 6scd are obtained foru=3.65. Finally, for
u=3.7, the structure of the scattering functions displays
again the two-peak Cantor set structure.

Pruning is not sufficient to imply trapped motion though.
Further inspection of the scattering dynamics foru between
3.6 and 3.65, as suggested by the structure of the scattering
functions, displays an extremely large number of bounces. In
Fig. 7sad we have plotted the first 100 bounces of a trajectory
that displays more than 10 000 collisions. We emphasize
that, in a strict sense, this orbit may not be trapped. This is a
consequence of the large dimensionality of this system. For
nonzero eccentricity the system has two and a half degrees of

freedom, and therefore Arnold diffusion may play an impor-
tant role. However, the time scale for Arnold diffusion to be
relevant issexponentiallyd largef19g, and therefore, for prac-
tical purposes we can consider it to be a trapped orbit.

FIG. 6. Number of bounces,Nb, as a function of the initial
velocity v for different values ofu. sad u=3.55, sbd u=3.6, scd u
=3.65, andsdd u=3.7. The change in the structure of the scattering
functions, which is associated with pruning, suggests the possible
existence of trapped orbits.
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Figure 7sbd shows in the projection in the spacev vs f0 of
the set of orbits with at least 1000 collisions for several val-
ues of«. For a given eccentricity, Fig. 7sbd provides a quali-
tative picture of the measure of the trapped orbits associated
with then=0 retrograde family. As expected, the measure of
this set diminishes for increasing eccentricity. The case of
circular motion corresponds to a uniform distribution onf0
andv located in the interval 0.437ùvù0.42. We notice that
the uniform distribution of the circular case is quite sensitive
to breaking the rotational symmetry of circular motion for
nonzero«—i.e., the constancy Jacobi integral. This is nicely
illustrated with the rather small values of« plotted in Fig.
7sbd.

Finally, an alternative way to show that trapped motion
exists is to use the escape rate. The escape rate of a hyper-
bolic system shows an exponential behavior in contrast to the
nonhyperbolic cases which show an algebraic decay law,
with an exponent near to 2f20g. If one distributes projectiles
in the interaction region, one can numerically obtain the ex-
ponent of the decay law. If the number of projectiles in the
tail of the scattering experiment ismuch higher, in a non-
statistical way, than the one expected by the escape law, it
can be concluded that a stable island exists in that interaction
region. In Fig. 8 the differential escape rate is shown for«

=0.001 65. Focusing on the tail, there is a nonstatistical pro-
nounced peak at the cutoff of the number of bounces. This
indicates the existence of a stable island for this eccentricity.

B. Scattering dynamics on the snail structure

Now we analyze the relevant aspects of the dynamics for
trajectories with initial conditions corresponding to the snail
structure displayed in Fig. 4. We recall that the numerical
results illustrated in the charts of initial conditions are quite
generally interpreted as the intersection of the stable mani-
folds of some invariant structure in phase space with the
hyperplane that defines the chart. This is therefore related
either to the unstable periodic orbits, to the existence of other
stable periodic orbits or to the existence in phase space of
parabolic manifolds or other structures displaying marginal
stability. Yet from the charts of initial conditions no stability
properties of the scattering events associated with these
structures can be inferred. We thus perform further one-
parameter scattering experiments.

In Fig. 9 we display the number of collisions,Nb, and the
escape timeTe for u=2.74. We observe the dramatic change
in the structure of the number of bounces in comparison to
the results displayed in Fig. 6. The scattering functions show
characteristic accumulation of peaks. Interestingly, while the
number of collisions remains moderateson the scale dis-
playedd, the escape time increases dramatically as we ap-
proach the accumulation point. We are led to conclude that
the scattering trajectories must display a collision with the
disk such that the outgoing velocity is remarkably small.
This is consistent with the 1/v type of behavior displayed in
the escape time. Inspection of individual scattering trajecto-
ries confirms this. We shall thus refer to these characteristic
peaks as the low-velocity peaksf21g. We mention that this
behavior is also observed in the circular case by performing
scattering experiments of constant initial energy, which
probe different Jacobi integralsf7g, and have also been ob-
served in a one-dimensional time-dependent model of par-

FIG. 7. sad First 100 bounces of a trajectory displaying at least
10 000 collisionss«=0.001,u=3.62,v=0.4332, . . .d. sbd sColor on-
lined Projection into thef0 vs v space of the trajectories which
bounce at least 1000 times with the disk, characterizing the trapped
region for distinct values of the eccentricity:«=0.001 sred/grayd,
«=0.0015sgreen/light grayd, and «=0.0016sblue/dark grayd. For
comparison, the trapped region of the circular case is distributed
uniformly on f0 in the interval 0.437ùvù0.42.

FIG. 8. sColor onlined: Differential escape rate for initial condi-
tions encircling the trapped regions«=0.001 65d. The red straight
line shows thesinitiald algebraic decay expected in this situation.
The peak at the right of the plot indicates a large number of par-
ticles that do not escape.
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ticle transport in an open hydrodynamical flowf22g.
Inspection of the scattering functions and individual tra-

jectories reveals that there is some systematic behavior. We
notice first that each low-velocity peak is accompanied by a
partner. Moreover, the low-velocity peaks display a kind of
fractal structure and thus suggest the existence of homoclinic
and heteroclinic connections of some invariant structure in
phase space. Scattering trajectories corresponding to a cer-
tain low-velocity peak lose almost all velocity after thekth
collision. Different low-velocity peaks can be classified by
the first collision where a significative amount of kinetic en-
ergy is lost. Within one such peak, the scattering trajectories
of nearby intervals of continuityf18g differ in Te, to a very
good approximation, by a constant quantity. Indeed, the in-
tervals of continuity can be characterized by the number of
full turns of the disk between the collisionsk andk+1—i.e.,
between thesfirstd collision where the particle looses most of
its energy and the next one. By consequence, this difference
in time is very close to 2p, which is the period of the orbit of
the disk. We may thus introduce a new labelI skd to classify
the corresponding interval of continuity of the scattering tra-
jectory. Second- and higher-order low-velocity peaks are as-
sociated with later collisions of this type—i.e., which take
away most of the energy of the particle in later collisions.
This characterization corresponds to a symbolic description
of the dynamics for scattering events on the snail structures,
even though the snail structures have not been associated
with the simple periodic orbits of the system. Further details
and constraints on the application of this symbolic dynamics

for the snail structures require further investigation.
Numerical results for«=0 suggest that the snail structures

are related to the projection of the homoclinic and hetero-
clinic intersections of the manifolds of the radial collision
periodic orbits, first, and second, with the overall bifurcation
scenariof23g. This is consistent with the fractal behavior
mentioned above. After the first development of the horse-
shoe, which by varying the Jacobi integral makes it com-
pletely hyperbolic, the tendrils of the invariant manifolds es-
cape. They eventually fold back and reenter the fundamental
rectangle in the horseshoe construction. The entrance with
a=p, projected into the initial condition space, is the outer-
most part of the snail. For positiveJ, further reduction yields
to the next saddle-center bifurcation and the creation of two
new periodic orbits. Their corresponding manifolds repeat
the above construction: When they fold back and reenter the
fundamental rectangle they do it precisely in the middle of
all previous ones. So every new passage througha=p is
projected precisely on the snail structure and also defines the
n hierarchy of the primitive periodic orbits. The loops of the
snails should scale as 1/n, since the saddle-center bifurcation
scales like that.

V. SUMMARY AND OUTLOOK

In this paper, we have analyzed the scattering dynamics of
a restricted three-body problem in two dimensions, which
results in a system with a five-dimensional effective phase
space. We have based this analysis on known properties of

FIG. 9. Structure of the scattering functionssnumber of collisions,Nb, and escape timeTed for initial conditions in the snail structure.
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the particular case of circular orbits where the Jacobi integral
is conserved and only one and a half degrees of freedom are
relevant. Taking small symmetry breaking as a point of de-
parture, we were able to identify a two-dimensional subspace
of initial conditions, which displays relevant properties of the
system, without the usual pains of work in high-dimensional
spaces.

Our method allowed us to identify initial conditions for
which trapping is likely to happen. While our numerical cal-
culations on individual orbits points towards trapped motion
strajectories displaying more than 10 000 collisionsd and the
escape-rate behavior shows a nonstatistical peak, the high
dimensionality of the system allows for effects like Arnold
diffusion. Therefore, permanent trapping may not occur and
will certainly be difficult to prove. Yet the time scale in
which such effect may be relevant is exponentially longf19g.

We have also analyzed another unusual feature of the
scattering functions: namely, the low-velocity peaks and
the corresponding trajectories, which are not directly related
to simple periodic orbits of the system. Interestingly, the
structure of the time of escape for the low-velocity peaks
gives information on the period of the disk, which is ob-
tained only by using asymptotic data. This may be of rel-
evance in the context of the inverse chaotic scattering prob-
lem f18g. We constructed an approximate symbolic dynamics
which describes the main features of the scattering events
involved in this case. This is important because low-velocity
peaks are related to parabolic manifoldsf21,22g, in the sense
that the limiting orbit is marginallysundstable.

The basic idea involved is the reduction to a space of
initial conditions of considerably lower dimensionality. Such
a reduction may well be essential for practical purposes, e.g.,
for numerical modeling or for experimental work, where one
certainly does not want to search the interesting phenomena
in very-high-dimensional spaces of initial conditions, par-
ticularly if some system parameters must also be varied. The
benefit of such a procedure is to identify regions where in-
teresting and nontrivial scattering dynamics takes place. Yet
this benefit will only be obtained if the reduced space of
initial condition is chosen adequately; we achieved this by
continuation, slightly breaking a continuous symmetry. We
would like to emphasize that the dimensional reduction of
subspace is desirable quite generally in higher-dimensional
systems and that weak symmetry breaking can provide the
physical insight needed in a wide variety of situations. How-
ever, this method does nota priori provide direct informa-
tion on trapped motion. Future investigations will be directed
to describe the chaotic set itself, in particular, to decide on
the existence of truly trapped motion. It is important to no-
tice that the subspace of initial conditions we found dis-
played interesting structures even for large symmetry break-
ing, where qualitatively different behavior from the
symmetric case occurs. One might think of situations, where
different symmetries are possible and could be used to define
different subspaces, which display similar or complementary
features.
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APPENDIX

Here, we provide a proof of the existence of the periodic
orbits in the problem of scattering off a disk on a Kepler
orbit, adapting the method of analytical continuationf24g for
this billiard problem.

Consider that the particle collides with the disk. We de-
scribe this collision using the anglef to denote the position
of the center of the disk. Relative tof, we denote byu the
angle of the velocity, bya the angular position of the colli-
sion on the disk, and byJ the Jacobi integralssee Ref.f7g for
its definitiond. We notice that the angles used here corre-
spond to those used along the paper, but are defined relative
to the anglef. Given thenth collision, the collisionn+1,
which we assume that takes place, is defined by the mapf«,

1
fn+1

an+1

un+1

Jn+1

2 = f«1
fn

an

un

Jn

2 . sA1d

In the circular case, the fixed points of this map correspond
to periodic orbits if the angleu satisfies the relation

u =
p

2m
s2p + m− 2nmd, sA2d

wherep, m andn are 0,1,2,…. In this case, the periodic orbit
is closed afterm bounces with the disk, andn denotes the
number of full turns of the disk between consecutive
bounces. In particular, for the circular case, we have

f01
fn

p

un

Jn

2 =1
fn + df mod s2pd

p

un

Jn

2 , sA3d

where df=s2n−1dp+2u is the angle difference inf be-
tween two successive bounces.

We want to prove the existence of initial conditions for
the eccentric case that are mapped onto themselves afterm
bounces. This condition is fulfilled if

f«
m1

f

a

u

J
2 −1

f

a

u

J
2 = 0. sA4d

The idea of the proof is to show that Eq.sA4d can be
solved perturbatively in« close to a periodic orbit of the
circular case. Neglecting second-order terms, Eq.sA4d is re-
written as
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sDfm − 1d1
f − f0

a − p

u − u0

J − J0

2 + «
]f«

m

]«
= 0. sA5d

Here,Dfm is the derivative of the map at«=0 ands] /]«df«
m

is the derivative of the map with respect to«, evaluated at
«=0, f=f0, a=p, u=u0, andJ=J0.

Due to the conservation of the Jacobi integral for the cir-
cular case, all matrix elements of the last row ofsDfm−1d are
equal to zero. In order to fulfill Eq.sA5d, this implies that the
last row of s] /]«df«

m must have all matrix elements equal to
zero. This is indeed the case, as it can be computed directly
sfor details, see Ref.f23gd. So the system of linear equations
is reduced by 1. In addition, for the circular case, the depen-
dence onf is trivial. Then, the system of linear equations
has the form

Bsmd1a − p

u − u0

J − J0
2 = − «

] f̂«
m

]«
. sA6d

Here, the matrixBsmd is given by the matrixsDfm−1d omit-

ting the first column and the last row, andf̂«
m represents the

corresponding map.

In order to have a solution of Eq.sA6d, this determinant
of the matrixBsmd must be different from zero. The deter-
minant can be written as

detfBsmdg = Cmslm/2 − l−m/2d2, sA7d

wherel is the eigenvalue corresponding to the fixed point of
the circular case andC is a constant independent ofm. This
expression can only be zero forlm=1. Alternatively, from
the expression forBsmd, we obtain

detfBs1dg = −
Rdf3

dsR− dd2cossu0d2 . sA8d

This expression can only be zero ifdf is zero—i.e., if the
angle difference between two successive bounces would be
zero. Therefore, in the casesdf=0 and lm=1 we cannot
continue the periodic orbits of the circular case to the eccen-
tric case. Otherwise, the matrixBsmd can be inverted and the
system of linear equationssA5d has exactly one solution.
This establishes that the fixed points of the circular map can
be deformed for nonzero« and yield periodic orbits of the
eccentric case.
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